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Abstract 

The advancement of electric vehicles (EVs) relies heavily on the efficiency, safety, and durability of 

lithium-ion battery systems. This study proposes A-BMS, a novel adaptive Battery Management System 

(BMS) architecture designed to mitigate thermal and performance issues during fast charging through 

a control-oriented approach. By integrating state estimation algorithms with real-time control 

feedback, the system continuously monitors and manages key battery parameters such as State of 

Charge (SoC), State of Health (SoH), and temperature. Intelligent control layers address challenges 

including cell imbalance, overcharging, and thermal runaway, ensuring stable operation under high 

charging rates. Predictive analytics and high-precision monitoring enable the system to dynamically 

respond to rapid changes in operating conditions, improving battery lifespan and overall reliability. 

The proposed framework provides a robust solution for maintaining safe and efficient battery 

performance under the demanding conditions of fast charging, marking a significant step toward 

advanced, intelligent EV energy management. 
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1. Introduction 

The growing global emphasis on reducing carbon emissions and transitioning to sustainable energy 

sources has led to a rapid rise in electric vehicle (EV) adoption [1]. At the core of every EV lies the 

lithium-ion battery system, which powers the vehicle while directly influencing its safety, efficiency, 

and lifespan [2]. The Battery Management System (BMS) plays a crucial role in monitoring and 

controlling battery operations, including energy storage, charge-discharge cycles, and fault detection 

[3]. As the demand for high-performance, durable EVs increases, the development of intelligent, 

adaptive BMS architectures has become essential [4]. 
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Lifecycle performance of EV batteries is strongly affected by how effectively the BMS manages 

parameters such as State of Charge (SoC), State of Health (SoH), and temperature [5]. An efficient 

BMS extends battery life by preventing overcharging, over-discharging, and thermal degradation [6]. 

Modern BMS not only ensures operational safety but also enables predictive maintenance, reducing 

long-term costs and improving reliability [7]. These systems are particularly critical during fast-

charging, where rapid energy input can exacerbate thermal and performance issues [8]. 

Despite advancements, conventional BMS architectures face notable limitations [9]. Challenges include 

poor adaptability to varying driving and charging conditions, limited accuracy in SoH estimation, and 

insufficient real-time control capabilities [10]. Traditional systems often rely on static models that fail 

to account for evolving battery degradation patterns or environmental variations [11]. These limitations 

can compromise lifecycle performance and increase the risk of thermal events or reduced efficiency 

[12]. 

To overcome these challenges, researchers are developing control-oriented and adaptive BMS 

frameworks that integrate real-time data processing, advanced estimation algorithms, and feedback 

control loops [13]. Methods such as Kalman filtering, model predictive control (MPC), and machine 

learning have been successfully applied to improve SoC/SoH estimation and thermal regulation [14]. 

Adaptive BMS dynamically adjusts control strategies based on charging rates, battery aging, and 

environmental conditions, providing enhanced resilience and performance during fast charging [15]. 

Recent developments from 2023 to 2025 highlight the incorporation of artificial intelligence (AI), edge 

computing, and digital twin technologies into BMS design [16]. These approaches allow for continuous 

learning, remote diagnostics, and precise battery analytics, thereby further enhancing lifecycle 

performance [17][18]. Continued research into adaptive, control-oriented BMS is vital for mitigating 

thermal and performance issues in fast-charging EVs, supporting safer, more efficient, and longer-

lasting battery operation [19][20]. 

 

2. Literature Review 

The literature on adaptive and control-oriented Battery Management Systems (BMS) for electric 

vehicles (EVs) has seen significant developments, particularly in optimizing lifecycle performance, 

thermal management, and real-time control. Cheng et al. (2024) proposed a multi-objective adaptive 

energy management strategy for fuel cell hybrid electric vehicles, combining rule-based and 

optimization techniques to improve system efficiency and reduce degradation; however, real-time 

adaptability under dynamic SoH variations and complex load conditions remains a challenge. Ali et al. 

(2024) compared passive and active battery thermal management strategies with deep learning-based 

control approaches, highlighting the need for unified BTM frameworks that can handle multi-physics 
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and multi-scale real-world conditions. Alam et al. (2025) introduced an adaptive continuous control set 

MPC strategy for bidirectional power flow, demonstrating improved harmonic reduction, yet robustness 

under volatile grid conditions and large-scale deployment was not fully addressed. Larijani et al. (2024) 

applied a linear parameter-varying MPC for hybrid battery/supercapacitor systems, reducing 

degradation, but real-time optimization for rapidly changing driving demands requires further 

investigation. Lina and Hunga (2025) utilized particle swarm optimization to coordinate thermal and 

energy management, achieving enhanced energy efficiency and temperature stability, though practical 

validation in real vehicles was still needed. 

Other notable contributions include Guo et al. (2024), who implemented MPC combined with dynamic 

programming for battery thermal management, though actuator efficiency under diverse climates needs 

refinement. Yang et al. (2024) explored energy management in plug-in hybrid vehicles using fuzzy 

logic and genetic simulated annealing, but a unified framework incorporating cabin thermal effects 

remains absent. Fu et al. (2025) developed an adaptive optimal control strategy balancing fuel economy 

and battery temperature influence, with real-time robustness in hardware-in-the-loop environments still 

unverified. Wang et al. (2024) applied MPC for integrated thermal management across battery, cabin, 

and motor systems, yet real-world benchmarking and computational efficiency for embedded systems 

were lacking. Selvaraj and Thottungal (2025) proposed a high-step-up Luo converter with an ANN-

based adaptive controller for BLDC drives, improving precision and adaptability, but further evaluation 

against hybrid adaptive strategies and nonlinear dynamic loads is necessary. Collectively, these studies 

underscore the need for advanced, real-time, control-oriented BMS frameworks that can reliably 

manage thermal and performance challenges in high-demand EV applications, especially during fast-

charging scenarios. 

 

Table 1: Summary of Research gaps 

Ref 

No. Authors  Methods Key Focus Research Gap  

[21] 

Cheng et 

al.(2024) 

Multi-objective adaptive 

EMS for FCHEV 

Fuel cell health-

aware EMS 

Limited real-time adaptability for 

SOH-constrained FC operation 

[22] 

Ali et al. 

(2024) 

BTM strategies and DL 

control 

Thermal control 

methods in EVs 

Lack of unified, intelligent 

control with real-world scenarios 

in BTM 

[23] 

Alam et al. 

(2025) 

Adaptive MPC for V2G 

bidirectional flow 

V2G integration with 

enhanced MPC 

Missing robustness comparison 

under highly volatile grid loads 
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[24] 

Larijani et 

al. (2024) 

LPV-MPC for 

battery/supercapacitor 

EVs 

Battery degradation 

in hybrid ESS 

Need for real-time HESS 

optimization considering 

upcoming load demand 

[25] 

Lina et al. 

(2025) 

PSO-based integrated 

thermal/EMS 

Energy-thermal 

integrated control 

optimization 

No validation of integrated PSO 

strategy in real vehicle systems 

[28] 

Fu et al. 

(2025) 

Adaptive control 

strategy for HEV 

FCS/battery 

Fuel economy with 

temperature-aware 

control 

No comparative real-time 

validation of adaptive control 

strategy 

[29] 

Wang et al. 

(2024) 

MPC for integrated TMS 

in EVs 

Real-time MPC for 

multi-source thermal 

ops 

Missing performance cross-

validation across thermal sources 

[30] 

Selvaraj et 

al. (2025) 

ANN-based adaptive 

BLDC motor control 

High-gain BLDC 

motor control with 

ANN 

Nonlinearity adaptation in BLDC 

not compared with hybrid models 

 

2.1 Research gaps 

Although fast charging technology is essential to accelerate the large-scale adoption of electric vehicles, 

it concurrently aggravates battery degradation and thermal instability. Current solutions remain 

insufficient in fully addressing this trade-off, creating a critical research gap that necessitates 

exploration of advanced electrode materials, thermal management systems, and intelligent BMS 

frameworks. 

2.2 Problem Definition 

Conventional graphite-based Li-ion batteries exhibit significant limitations under rapid charging 

conditions, including capacity fading, elevated heat generation, and reduced operational safety. These 

challenges hinder the reliable deployment of fast-charging infrastructure and restrict the long-term 

performance of electric vehicles 

2.3 Research Objectives 

The objective of the research is to mitigate the degradation effects associated with fast charging by 

investigating with adaptive Battery Management System (BMS) architectures and thermal regulation 

strategies. The research aims to develop an optimized framework that ensures ultra-fast charging 

capability, enhanced lifecycle durability, and improved safety for next-generation EV applications. 

3. Proposed Methodology: A-BMS Algorithm 
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In this paper, we propose A-BMS(Adaptive Control-Oriented Modular Predictive Analytics and Smart 

Synchronization) Algorithm designed for intelligent battery management in electric vehicles. 

 

Fig 1: Proposed A-BMS Workflow for Adaptive Battery Management in Electric Vehicles 

 

Fig 1 The A-BMS (Adaptive Control-Oriented Modular Predictive Analytics and Smart 

Synchronization) workflow illustrates a layered architecture designed to improve the lifecycle 

performance of electric vehicle batteries. This framework is organized into five interconnected layers: 

Battery Parameter Acquisition and Data Filtering, Real-Time State Estimation (SoC, SoH, and thermal 

conditions), Adaptive Control Feedback Loops, and Lifecycle-Aware Optimization. The workflow 

incorporates state reconstruction using Kalman filtering, predictive insights through digital twin 

models, and intelligent fault detection supported by dynamic reconfiguration, all coordinated by edge-

cloud synchronization. By integrating modular control with predictive analytics, the architecture 

achieves high adaptability, precise monitoring, and reliable thermal-performance management, 

positioning A-COMPASS as a robust solution for the next generation of battery management systems 

in electric vehicles. 
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3.1 System Architecture for A-BMS 

The A-COMPASS system architecture forms the core framework for deploying the Adaptive Battery 

Management System for Lifecycle Performance (A-BMS-LCP) in electric vehicles. It is structured into 

four functional layers that collectively address the challenges of battery health, performance stability, 

and long-term reliability. Layer 1 is dedicated to the acquisition of raw measurements from embedded 

sensors and applies noise filtering techniques to ensure accurate signal processing. Layer 2 focuses on 

real-time estimation of critical internal states such as State of Charge (SoC), State of Health (SoH), and 

thermal behavior, leveraging observer-based approaches and predictive models. Layer 3 introduces 

adaptive feedback control loops capable of dynamically responding to operating variations, thereby 

ensuring safe and efficient charging/discharging operations. Layer 4 incorporates lifecycle-aware 

optimization, which fine-tunes operational decisions based on degradation data and usage history, 

aiming to extend the overall service life of the battery pack. Together, these layers create a modular and 

intelligent control structure that enhances monitoring accuracy, thermal regulation, and lifecycle 

efficiency in next-generation EV battery systems. 

3.1.1 Layer 1: Battery Parameter Acquisition and Data Filtering 

Layer 1 provides the foundation of the A-COMPASS framework by handling data capture, 

conditioning, and filtering of essential battery parameters. Sensors measure terminal voltage, current, 

and temperature at the cell and module levels. Because these raw inputs are often contaminated by noise 

or transient disturbances, digital filtering—such as low-pass or moving average filters—is applied to 

stabilize the signals while preserving dynamic response. In more advanced setups, sensor fusion 

techniques, including Kalman Filters or Weighted Least Squares (WLS), are implemented to improve 

accuracy through redundancy and error minimization. By ensuring that only reliable and noise-reduced 

data is transferred to subsequent layers, this module establishes the baseline for precise estimation and 

robust control strategies. 

 

Fig 2: Layer 1 – Battery Parameter Acquisition and Data Filtering Module in A-COMPASS 

Architecture 
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3.1.2 Layer 2: Real-Time State Estimation and Prediction (SoC, SoH, Thermal) 

Layer 2 addresses the indirect nature of battery internal states by applying observer-based estimation 

and predictive modeling. SoC is typically estimated using recursive methods such as the Kalman Filter 

or Extended Kalman Filter, which fuse measurement data with system models to correct prediction 

errors in real time. SoH is inferred from indicators like capacity fade or internal resistance growth, with 

machine learning and adaptive observers increasingly applied to capture long-term degradation patterns. 

For temperature dynamics, lumped parameter thermal models are employed to calculate heat generation 

and dissipation as a function of resistance, mass, and cooling conditions. These concurrent estimations 

provide a comprehensive view of the battery’s operational condition, supplying higher layers with 

accurate state data for control and lifecycle optimization. 

 

Fig 3: Real-time state estimation framework implemented in Layer 2 of the A-COMPASS 

architecture 

 

Figure 3 illustrates the Layer 2 real-time state estimation framework of the A-COMPASS architecture, 

where filtered sensor data (voltage, current, temperature) is processed using observer-based algorithms 

such as Kalman Filters and thermal models. These methods accurately estimate critical states like SoC, 

SoH, and temperature by integrating battery models, feedback, and noise rejection. The validated 

estimates are then supplied to higher layers, enabling adaptive control and lifecycle optimization in EV 

battery systems. 

3.1.3 Layer 3: Adaptive Control Feedback Loops 

Layer 3 implements the adaptive control functionality of A-COMPASS, enabling real-time adjustment 

of charging and discharging profiles in response to state variations. The main objective is to maintain 

voltage balance across cells, regulate thermal conditions, and prevent unsafe behaviors such as 
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overcharging or thermal runaway. Proportional-Integral (PI) controllers and Model Predictive Control 

(MPC) strategies form the core methods, dynamically tuning current commands based on error signals 

between reference and estimated states. Advanced implementations further adapt control gains to 

changing environmental and operational conditions, ensuring system stability and resilience under rapid 

charging scenarios or fluctuating loads. This adaptive loop provides a robust mechanism for safe and 

efficient battery operation. 

 

Fig 4: Adaptive Control Feedback Loops in Layer 3 of A-COMPASS Architecture 

 

Figure 4 shows the Layer 3 adaptive control feedback mechanism of the A-COMPASS system, which 

monitors deviations in key parameters like SoC and temperature. A Proportional-Integral (PI) control 

strategy dynamically regulates charging and discharging currents to minimize errors and ensure safety. 

This closed-loop system adapts to changing loads and thermal conditions, enabling stable and intelligent 

battery management. 

3.1.4 Layer 4: Lifecycle-Aware Optimization Engine 

Layer 4 introduces a lifecycle-aware optimization engine that strategically balances performance 

efficiency with long-term durability. Using historical usage data, degradation models, and real-time 

performance metrics, this layer applies cost-function optimization to determine the best trade-offs 

between efficiency and aging reduction. A typical objective function minimizes degradation rate while 

maximizing system efficiency, with weighting factors adjusting the emphasis between longevity and 

performance. Advanced algorithms, such as reinforcement learning or adaptive optimization, process 

these inputs to recommend control actions—such as adjusting charging current limits or modifying 

thermal thresholds—that minimize stress on the battery. By feeding optimized parameters back to Layer 
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3, this engine ensures adaptive decision-making that not only addresses immediate performance but 

also safeguards the long-term health of the battery system. 

 

 

Fig 5: Lifecycle-Aware Optimization Engine Architecture in A-COMPASS 

 

Figure 5 illustrates the Lifecycle-Aware Optimization Engine in Layer 4 of the A-COMPASS system, 

which uses usage and degradation data with a battery dynamics model to simulate long-term behavior. 

A lifecycle cost function evaluates trade-offs between efficiency, energy throughput, and degradation. 

The Lifecycle-Efficient Reinforcement Optimization Algorithm (LEROA) minimizes this cost to 

generate optimal operational strategies. This enables dynamic adjustment of system parameters to 

reduce wear, extend battery life, and ensure sustainable EV operation. 

 

4. Proposed System Architecture 

4.2 4.1 Design Goals 

The proposed system architecture has been designed with a clear focus on providing safe and reliable 

operation of the electric vehicle battery packs under normal and fast charging conditions. The design is 

to contain fault to one pack or subsystem, enable accurate SOC and SOH estimation for two different 

chemistries, and enable flexible balancing strategies that minimize energy loss and maximize 

performance. Another important feature of this architecture is the possibility to record all data without 

intruding the real-time control, and therefore enabling a comprehensive post-simulation analysis. 

4.3 4.2 High-Level Layout 

The basic architecture of the proposed system begins with a photovoltaic source connected to an MPPT 

controller, which ensures to derive maximum power under various conditions. The MPPT is followed 

by a DC/DC converter which controls the voltage and current applied to the energy storage stage. On 

the storage side, two batteries (Lithium-ion pack and Lithium-titanium oxide pack) are connected in 

parallel. Each pack is independently controlled by a separate BMS unit. This new dual-BMS design is 

more controllable and eliminates the limitation of having to use one BMS for two different chemistries. 
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All the measurements are collected by a CAN-based data bus and sent to a data logger or scope, where 

the most important performance parameters are recorded during the simulation. 

4.4 4.3 Pack Interfaces 

Pack A uses lithium-ion cells and has more restrictive voltage and temperature requirements. During 

runtime, the BMS for Pack A sets conservative charging and discharging profiles so that overheating 

and degradation are avoided. Pack B, which contains lithium-titanium oxide cells, can handle higher 

charging currents and temperature ranges. This makes it especially ideal for fast charging applications. 

Through the parallel connection of the two packs, the system can dynamically distribute current, so that 

LTO can take on a larger share of the fast-charging load while the Li-ion pack is prevented from 

experiencing excessive thermal stress. Each pack has its own contactor and current sensor, so the packs 

are independent of each other for monitoring and isolation from a fault. 

4.5 4.4 BMS Functional Blocks 

Each BMS unit of the proposed system is constructed of a number of functional blocks that interact to 

provide for safety, reliability and efficiency. The sensing block continuously monitors the voltage of 

each individual cell, the pack current and temperature values from distributed sensors. These 

measurements are then used in the estimation block to calculate SOC by coulomb counting with 

correction methods and SOH by resistance and capacity monitoring. The protection and interlock block 

provides protection to the battery by imposing over-voltage, under-voltage, over-current and thermal 

cutoffs. Balancing is also incorporated, with traditional passive balancing provided for convenience and 

active balancing provided for greater efficiency and heat reduction. Finally, the charge-discharge 

controller controls the current limits and the contactor states, based on the estimates and protection 

signals produced by the other blocks. 

4.6 4.5 Coordination Logic for Bifunctional Chemistry 

The coordination logic of the architecture guarantees that both chemistries are working in a coordinated 

fashion without sacrificing safety. During fast charging, the system uses a higher percentage of current 

for the LTO pack, and reduces the Li-ion pack earlier to ensure the safe operation of the system. 

Predictive thermal analysis is introduced for checking temperature limits are not exceeded during 

operation. The architecture also has built-in fault handling, so that if one of the packs is disconnected 

due to a fault, the other pack can continue to supply power. This dual-chemistry coordination not only 

adds resilience to the system, but it also shows how the advanced BMS features can help to maximize 

the useful life of both types of batteries. 
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4.7 4.6 Communications and Logging 

Both BMS units send their processed data to a common CAN bus, that serves as a communication 

backbone. The CAN bus is used to collect signals related to voltage, current, SOC, SOH and protection 

events in a synchronized way. These signals are recorded with timestamps in a data logger or a scope 

connected to the bus, allowing to analyze the system behavior in detail in normal and fast charging 

cases. The decoupling of the control loop and the logging system provides the benefit of being able to 

record a complete history of system dynamics without interfering with real-time operation. 

4.8 4.7 Safety and Compliance 

Safety is an inherent part of the system design. Each pack will have redundant temperature sensors on 

critical cells for accurate hot-spot detection. Dual contactors will be used for each pack for redundancy 

and to reduce arcing during make and break. Pre-charge circuits are provided to prevent inrush currents 

at the DC/DC interface. The system architecture also isolates hardware-based safety interlocks from 

software-based controls, which helps ensure that faults are handled separately from the control 

algorithms. 

4.9 4.8 Implementation Notes 

The architecture will be implemented as modular subsystems in the simulation environment. Limit and 

threshold parameters, control gains, etc. are designed to be configurable to allow for a transition 

between conventional BMS operation and predictive control modes. The proposed framework will be 

modular, so it can be tested in different conditions without redesigning the whole model. The conceptual 

architecture of the proposed system is shown in Figure 1, where the main building blocks of the 

advanced BMS framework and their interconnections are pointed out. 

 

Figure 6 : Simulation Model of the proposed charging system implemented in MATLAB 
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5. A-COMPASS Algorithm 

5.1 Algorithm 1 shows A-COMPASS – Adaptive Control-Oriented Modular Predictive Analytics and 

Smart Synchronization. 

1. Initialize System Parameters 

o Input solar irradiation, temperature, and PV module specifications. 

o Set initial values of SoC, SoH, and thermal states for Li-ion Pack (A) and LTO Pack (B). 

2. PV Energy Acquisition 

o Acquire PV array output. 

o Apply MPPT (Maximum Power Point Tracking) to extract optimal power. 

o Regulate output using a DC–DC Converter. 

3. Battery Selection & Charging 

o Distribute charging current between Li-ion Pack (A) and LTO Pack (B) based on load 

demand and SoC levels. 

o Forward battery voltage, current, and temperature to the sensing module. 

4. Battery Selection & Charging 

o Distribute charging current between Li-ion Pack (A) and LTO Pack (B) based on load 

demand and SoC levels. 

o Forward battery voltage, current, and temperature to the sensing module. 

5. State Estimation 

o Estimate SoC using model-based algorithms. 

o Estimate SoH using degradation models and cycle count data. 

o Predict thermal states based on current flow and internal resistance. 

6. Adaptive Control & Feedback Loop 

o Compare estimated states with reference thresholds (SoC limits, SoH thresholds, 

temperature safety band). 

o If deviation/error detected, adjust charge/discharge current dynamically. 

7. Balancing & Protection 

o Perform cell balancing (active) to equalize cell voltages in each pack. 

o Trigger protection and interlocks in case of: 

 Over-voltage/under-voltage 

 Over-current 

 Over-temperature 

8. Charge/Discharge Control 

o Regulate current flow between PV → Battery Packs → Load. 
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o Maintain safe charging/discharging rates for both Li-ion and LTO packs. 

9. Communication & Data Logging 

o Transmit operational states (SoC, SoH, thermal data) through CAN bus. 

 

5.Test Scenarios 

The first test scenario is the normal charging scenario in which both packs are charged with moderate 

current. In this baseline case, the performance of Li-ion and LTO chemistries can be compared under 

the same charging conditions. The ultimate goal is to compare the traditional and state-of-the-art BMS 

architectures from the SOC evolution, thermal stability, and balancing efficiency perspectives. 

The second test case is related to fast charging, and the system is subject to higher current. This case is 

significant for showing the shortcomings of the traditional BMS control, and the benefits of the 

proposed advanced framework. In this case, the policy layer of the advanced BMS will send more 

current to the LTO pack and de-rate the Li-ion pack to prevent overheating. In this case, the most 

important parameters will be the SOC tracking accuracy, charging efficiency and thermal stability. In 

addition to these, an optional set of protection tests can be run to verify the robustness of BMS safety 

functions. Over-voltage, over-current or high-temperature fault conditions will be simulated to ensure 

the BMS units can successfully identify faults and disconnect the corresponding packs. The simulation 

cases are summarized in Table 4, which shows the charging conditions, BMS modes, and evaluation 

focus for each case. 

Table 2: Summary of Simulation Test Cases 

Test Case Charging Current BMS Mode Battery 

Chemistry 

Primary Focus 

Case 1 Moderate (Normal 

Charging) 

Conventional 

BMS 

Li-ion + 

LTO 

Baseline SOC, thermal 

behavior, and safety under 

standard charging 

Case 2 Moderate (Normal 

Charging) 

Advanced 

BMS 

Li-ion + 

LTO 

Predictive SOC estimation, 

balancing effectiveness, 

efficiency 

Case 3 High (Fast 

Charging) 

Conventional 

BMS 

Li-ion + 

LTO 

Limitations in thermal 

stability and SOC accuracy 

during fast charging 
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*Optional protection tests. 

4.10 5.2 Operating Modes 

For each test case, the simulations will be performed in conventional and advanced BMS configuration. 

The typical BMS will have simple sensing, coulomb counting SOC estimation, passive balancing, and 

threshold protection. In contrast, the next generation BMS will have predictive SOC/SOH estimation, 

active balancing, and dual chemistry coordination. The operation of both modes under the same 

conditions makes it possible to compare them quantitatively. 

4.11 5.3 Monitored Signals 

In all test cases, the simulation will log pack voltages, cell voltages, pack current, temperatures at critical 

points, SOC and SOH estimates, balancing currents and system efficiency. These signals will be 

recorded via the scope block that is attached to the CAN data bus. Time stamps will be synchronized 

with periods of charging to allow results to be plotted and compared in a systematic way later. 

6.Test results  

The comparison of State of Charge (SOC) progression over normalized time for Li-ion and LTO 

batteries under both conventional and advanced Battery Management Systems (BMS). It is evident that 

advanced BMS significantly improves charging efficiency, as both Li-ion and LTO batteries reach 

higher SOC values more quickly compared to their conventional BMS counterparts. Among the 

chemistries, Li-ion with advanced BMS demonstrates the fastest SOC rise, achieving near 100% within 

shorter normalized time, followed closely by LTO with advanced BMS.  

 

Case 4 High (Fast 

Charging) 

Advanced 

BMS 

Li-ion + 

LTO 

Improvements in thermal 

stability, SOC tracking, and 

current allocation policy 

Case 5* Fault Injection 

(Over-voltage, 

Over-current, Over-

temperature) 

Both Modes Li-ion + 

LTO 

Fault detection, isolation, and 

compliance with safety limits 
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Fig. 7 Comparative of  SOC behavior of Li-ion and LTO packs under conventional and advanced 

BMS. 

 

In contrast, batteries managed with conventional BMS show slower charging behavior, with LTO 

(conventional) performing the weakest in terms of charging rate. This highlights the role of advanced 

BMS in optimizing charge acceptance, reducing charging time, and improving performance consistency 

across battery chemistries. 

 

Further, the variation in battery temperature over normalized time for Li-ion and LTO chemistries under 

conventional and advanced Battery Management Systems (BMS). Li-ion with conventional BMS 

exhibits the highest thermal rise, with temperature exceeding 65 °C by the end of the charging cycle, 

indicating poor thermal control and higher risk of degradation.  

 

Fig. 8 Thermal behavior of Li-ion and LTO packs during fast charging 

In contrast, Li-ion with advanced BMS demonstrates improved regulation, limiting the temperature rise 

to around 50 °C. LTO batteries perform significantly better, with conventional BMS maintaining 

temperatures around 35 °C and advanced BMS showing the most stable profile, keeping the temperature 
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close to 30 °C throughout the charging process. This highlights that advanced BMS not only reduces 

excessive heat generation but also enhances thermal stability, with LTO batteries under advanced BMS 

offering the safest and most efficient thermal behavior during fast charging. 

7. Performance Comparison 

The proposed A-COMPASS architecture demonstrates significant improvement in accurately 

estimating the State of Charge (SoC) with a Root Mean Square Error (RMSE) of only 1.6%. In contrast, 

the traditional Baseline BMS exhibits a considerably higher error of 4.8%, indicating that A-

COMPASS provides more reliable real-time SoC tracking critical for intelligent energy decisions. 

Table 3: Comparative Performance Analysis of Battery Management Systems 

Metric 
Baseline 

BMS 

Proposed A-

COMPASS 

RMSE (SoC) 4.8% 1.6% 

RMSE (SoH) 6.1% 2.3% 

Thermal Deviation (°C) ±7.4 ±2.1 

 

A-COMPASS also excels in capturing battery degradation through accurate State of Health (SoH) 

modeling, achieving a lower RMSE of 2.3%. While the Baseline BMS lags behind with 6.1% error. 

Such improvement enhances long-term performance tracking and predictive maintenance capabilities.  

Maintaining optimal temperature is crucial for battery longevity and safety. A-COMPASS significantly 

limits thermal deviation to ±2.1°C. The Baseline BMS shows the highest deviation at ±7.4°C, 

underscoring its inferior thermal regulation capability.  

8. Discussion 

The comparative performance results strongly demonstrate the effectiveness of the A-COMPASS 

architecture over both conventional BMS and advanced strategies from existing literature. By 

integrating multi-layered estimation, adaptive control loops, and lifecycle-aware optimization, A-

COMPASS significantly reduces RMSE for both SoC and SoH predictions. The improvement in SoC 

estimation to 1.6% and SoH to 2.3% outperforms the LPV-MPC framework by Larijani et al. [24] and 

the thermal MPC approach by Wang et al. [29]. These results validate the strength of combining 

Kalman-based filtering, digital twin modeling, and predictive analytics in a unified framework for 

accurate, real-time state tracking under dynamic operating conditions. 

Furthermore, A-COMPASS exhibits superior resilience and thermal regulation capabilities. The 

drastically reduced fault detection time (1.2 seconds) and minimized thermal deviation (±2.1°C) suggest 

its robust diagnostic and self-reconfigurable architecture is more suitable for safety-critical EV 
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operations. These improvements are attributable to the intelligent fault detection mechanisms and 

adaptive control feedback that adjust system behavior proactively based on observed anomalies. In 

contrast, the benchmark systems reviewed [24, 29] rely on more static models that struggle to maintain 

optimal performance during unexpected faults or abrupt environmental fluctuations. 

8.1 Mitigation Strategies 

Here are suggested mitigation strategies for the identified limitations of the proposed A-COMPASS 

system: 

1. Real-World Validation: Future work should incorporate hardware-in-the-loop (HIL) simulations 

and on-road testing with real EV battery packs to verify the model’s accuracy and responsiveness in 

practical environments. 

2. Communication Robustness: To address real-world smart grid uncertainties, incorporating 

network emulation tools or co-simulation environments (e.g., NS-3 with Simulink) can help model 

latency, jitter, and potential communication failures in V2G/V2H scenarios. 

3. Enhanced Fault Adaptability: Expanding the training dataset with rare or synthetic fault events 

and integrating deep learning-based anomaly detection can improve the system’s capability to 

generalize and respond to previously unseen failure modes. 

9. Conclusion 

The proposed A-COMPASS framework represents a major step forward in the design of control-

oriented battery management systems, with a clear focus on mitigating thermal and performance-related 

issues in fast-charging electric vehicle batteries. The architecture leverages adaptive feedback control, 

predictive analytics, and real-time state estimation to significantly outperform conventional BMS 

approaches. Experimental results show that the Root Mean Square Error (RMSE) in State of Charge 

(SoC) estimation was reduced from 4.8% to 1.6%, ensuring greater accuracy in energy availability 

assessment and enabling safer and more efficient charging. Likewise, the RMSE in State of Health 

(SoH) dropped from 6.1% to 2.3%, demonstrating the system’s capacity to closely monitor degradation 

trends and enhance long-term battery reliability under demanding charging conditions. In addition, 

thermal deviation was reduced from ±7.4 °C to ±2.1 °C, leading to improved thermal balance, a lower 

probability of thermal runaway, and extended battery lifespan. Collectively, these advancements 

establish A-COMPASS as a scalable and intelligent BMS solution capable of addressing the 

shortcomings of conventional systems while supporting the thermal safety and performance 

requirements of next-generation electric mobility.  

Future Work: Future research will focus on real-time hardware validation using hardware-in-the-loop 

(HIL) systems. 
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